If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-0.2H^2+26
We move all terms to the left:
(H)-(-0.2H^2+26)=0
We get rid of parentheses
0.2H^2+H-26=0
a = 0.2; b = 1; c = -26;
Δ = b2-4ac
Δ = 12-4·0.2·(-26)
Δ = 21.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{21.8}}{2*0.2}=\frac{-1-\sqrt{21.8}}{0.4} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{21.8}}{2*0.2}=\frac{-1+\sqrt{21.8}}{0.4} $
| 4x(x+2)=−5 | | t=10(5)+20 | | 15-x/3=3 | | 2x+3x+6=4x+7 | | -3x2-2=2x-7 | | -18=6/7u | | 2d–7=8–3d | | 3x+6x+10-20+55=180 | | 3x+6x+10-20+15=180 | | x²-12x=12 | | 3x+6x+10-20+70=180 | | 6(-6-2x)=-96 | | 3x+6x+10-20+50=180 | | x+16=236 | | 20x=7x+5+60 | | 0,7(x+10)=0,3(x+20) | | T(d)=50 | | 8^(4x+1)=1 | | -1/4(2x+8)=-6 | | dT(d)=50 | | 2m+4m-2=20 | | √x-2=3 | | (q+34)=2 | | 3(q+34)=23 | | y^2-4y-32=0. | | 4(2j+3)=10j | | 79-5x=(-9x)+119 | | -15=3(m-5) | | 0.5(4x+3=5x-2.5 | | 10x=6x+3 | | 4(1-2x)=+3(2-3x) | | 24=t-12 |